PLANT LIFE LAWN CAREAccount - 23412Sample IDMC2P.O. Box 639 - 1087 Jamison RoadRR # 1ALBERT BISTNERLab NumberPL8900Washington C.H., OH 43160ATTICA, OH 44807Soil Lab NumberY1875	Sheatzum Anglutia (Ing	Report To	Prepared For	Sample Information	
www.spectrumanalytic.com Sampled 05-08-200 Tested 05-11-200	P.O. Box 639 - 1087 Jamison Road Washington C.H., OH 43160 www.spectrumanalytic.com	PLANT LIFE LAWN CARE RR # 1 ATTICA, OH 44807	Account - 23412 ALBERT BISTNER	Sample ID Lab Number Soil Lab Number Sampled Tested	MC2N PL89001 Y18759 05-08-2006 05-11-2006

Plant Tissue Analysis Report Type: Corn (Zea mays) Part: Ear Leaf Stage: Bloom

Plant Test	Result	Normal Range	Soil Test	Result	Normal Range
Nitrogen	2.7 %	3.0 - 4.0	CEC	10.4	
Phosphorus	0.47 %	0.3 - 0.5	Soil pH	6.6	6.2 - 6.8
Potassium	1.7 %	2.0 - 3.0	Buffer pH	0	
Calcium	0.7 %	0.2 - 1.0	Organic Matter	1.9 %	
Magnesium	0.13 %	0.2 - 0.6	Phosphorus	99 m3-ppm	50 - 80
Sulfur	0.17 %	0.2 - 0.4	Potassium	149 m3-ppm	150 - 240
Boron	6.8 ppm	5 - 25	Calcium	1900 m3-ppm	1400 - 1900
Copper	5.1 ppm	5 - 20	Magnesium	122 m3-ppm	160 - 310
Iron	111 ppm	30 - 250	Sulfur	30 m3-ppm	20 - 40
Manganese	37 ppm	20 - 150	Boron	1.38 m3-ppm	1.7 - 2.6
Zinc	15 ppm	20 - 70	Copper	14.4 m3-ppm	0.1 - 15.4
Sodium	2500 ppm	0 - 3500	Iron	78 m3-ppm	9 - 40
			Manganese	62 m3-ppm	1 - 147
			Zinc	3.9 m3-ppm	4 - 11

Plant Tissue Nutrient Levels

Comments from Agronomist Scott Anderson

This sample is low in N, K, Mg, S, and Zn. The 140 lb N/acre application was not enough to adequately supply the crop. The low plant N has caused a proportional decrease in S uptake, which often happens. Weak N uptake also normally reduces the uptake of other nutrients somewhat. While the soil K is marginally in the Good range, the application of only 8 lb/acre of K2O in the row was not enough to supply the crop adequately. A soil test should be in the upper end of the Good range before we would expect that row fertilizer alone would meet crop needs in a normal season. The Mg is low in the plant for two reasons. First, the weak N uptake probably reduced the uptake of Mg somewhat. However, it is also somewhat common to see the Mg levels in the crop drop as the soil K level begins to exceed the soil Mg level. If you plan to increase the rate of K2O applied on future crops, you should include Mg also. Any additional K uptake is likely to further depress the Mg uptake. It is possible that the weak uptake of both P and Mg was depressed somewhat by the strong soil Ca levels. The low plant Zn is influenced by the low plant N, but the soil test Zn is also only Medium, and no Zn was applied.